Hierarchical Deep Learning Architecture For 10K Objects Classification

نویسندگان

  • Atul Laxman Katole
  • Krishna Prasad Yellapragada
  • Amish Kumar Bedi
  • Sehaj Singh Kalra
  • Mynepalli Siva Chaitanya
چکیده

Evolution of visual object recognition architectures based on Convolutional Neural Networks & Convolutional Deep Belief Networks paradigms has revolutionized artificial Vision Science. These architectures extract & learn the real world hierarchical visual features utilizing supervised & unsupervised learning approaches respectively. Both the approaches yet cannot scale up realistically to provide recognition for a very large number of objects as high as 10K. We propose a two level hierarchical deep learning architecture inspired by divide & conquer principle that decomposes the large scale recognition architecture into root & leaf level model architectures. Each of the root & leaf level models is trained exclusively to provide superior results than possible by any 1-level deep learning architecture prevalent today. The proposed architecture classifies objects in two steps. In the first step the root level model classifies the object in a high level category. In the second step, the leaf level recognition model for the recognized high level category is selected among all the leaf models. This leaf level model is presented with the same input object image which classifies it in a specific category. Also we propose a blend of leaf level models trained with either supervised or unsupervised learning approaches. Unsupervised learning is suitable whenever labelled data is scarce for the specific leaf level models. Currently the training of leaf level models is in progress; where we have trained 25 out of the total 47 leaf level models as of now. We have trained the leaf models with the best case top-5 error rate of 3.2% on the validation data set for the particular leaf models. Also we demonstrate that the validation error of the leaf level models saturates towards the above mentioned accuracy as the number of epochs are increased to more than sixty. The top-5 error rate for the entire two-level architecture needs to be computed in conjunction with the error rates of root & all the leaf models. The realization of this two level visual recognition architecture will greatly enhance the accuracy of the large scale object recognition scenarios demanded by the use cases as diverse as drone vision, augmented reality, retail, image search & retrieval, robotic navigation, targeted advertisements etc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Robust Method for E-Maximization and Hierarchical Clustering of Image Classification

We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...

متن کامل

Incremental learning in hierarchical neural networks for object recognition

Robots that perform non-trivial tasks in real-world environments are likely to encounter objects they have not seen before. Thus the ability to learn new objects is an essential skill for advanced mobile service robots. The model presented in this paper has the ability to learn new objects it is shown during run time. This improves the adaptability of the approach and thus enables the robot to ...

متن کامل

DeSTIN: A Scalable Deep Learning Architecture with Application to High-Dimensional Robust Pattern Recognition

The topic of deep learning systems has received significant attention during the past few years, particularly as a biologically-inspired approach to processing highdimensional signals. The latter often involve spatiotemporal information that may span large scales, rendering its representation in the general case highly challenging. Deep learning networks attempt to overcome this challenge by me...

متن کامل

Learning the Hierarchical Parts of Objects by Deep Non-Smooth Nonnegative Matrix Factorization

Nonsmooth Nonnegative Matrix Factorization (nsNMF) is capable of producing more localized, less overlapped feature representations than other variants of NMF while keeping satisfactory fit to data. However, nsNMF as well as other existing NMF methods is incompetent to learn hierarchical features of complex data due to its shallow structure. To fill this gap, we propose a deep nsNMF method coine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1509.01951  شماره 

صفحات  -

تاریخ انتشار 2015